
In Proceedings of the Fifteenth Joint Conference on Artificial Intelligence, Nagoya, Japan, 1997.

Managing decision resources in plan execution

Michael Freed and Roger Remington
NASA Ames Research Center, MS 262-4

Moffett Field, CA 94035 USA

Abstract

We describe an approach to the problem of managing
resources in routine decision-making tasks. The
central feature of this approach is the use of reusable
RAP-like plans to generate decisions. This allows our
system, APEX, to take advantage of the flexibility in
scheduling and method selection provided by execution
mechanisms and thereby minimize or circumvent
resource conflicts. We then discuss an application of
APEX for simulating a human air traffic controller in
order to aid in the evaluation of radar display designs.

1 Introduction

In this paper, we describe an approach to managing
resources in routine decision tasks and apply this approach
to a practical problem. Routine decisions are choices that
occur regularly in an agent’s everyday tasks. For example,
drivers are often faced with decisions such as whether to
slow down for a yellow light and whether to turn at an
often-encountered intersection. Making such decisions
involves several resource-demanding activities including
acquiring decision-relevant information (internally or from
the task environment) and making inferences. In time-
pressured conditions, or when multiple tasks compete for
the same computational and perceptual resources, the
ability to manage scarce resources becomes an important
determiner of agent performance.

Researchers have taken a variety of approaches to
managing resources, especially computational resources,
when deciding action in realistically complex, dynamic task
environments. One approach is to eliminate certain
expensive computations. Reactive planners, for example,
use only current perceptions to conditionalize action choice,
thus avoiding the expensive computations required to
construct plans and retrieve items from memory. Some
systems avoid specific classes of inference such as the

prediction of future states and deductive retrieval [Firby89].
Others allow expensive operations when they are most
likely to prove essential but otherwise avoid them
[Chien91;Hayes-Roth95].

A second approach is to delay decisions until relevant
information can be acquired cheaply (or at all), thus
avoiding the computationally expensive process of
conditionalizing decisions on a large number of possible
future states. Systems that employ this approach [Firby89;
Gat96; Simmons94; Pell97] are referred to as execution
systems since they interleave planning (deciding action)
with plan execution.

Our system’s plan execution component, like the RAP
system [Firby89] on which it is based, combines these
approaches but differs from previous systems in how it
handles routine decisions. In particular, routine decision
tasks are treated in a uniform manner with tasks of other
kinds — i.e. they are carried out by general-purpose task-
execution mechanisms in accordance with task-specific,
variablized plan structures called methods. Methods consist
of steps, each corresponding either to a primitive action or
to some non-primitive that must be decomposed into
substeps by selecting a more specific method.

2 Decision-methods

The use of specialized decision-plans has a number of
advantages. In particular, plan execution mechanisms can
begin, abort, retry, interrupt, resume, specify and terminate
decision tasks as needed to handle situational constraints
and coordinate resource use with other tasks. Consider, for
example, the method below for deciding between
alternative routes home from work.

(method-25 (decide-route-from-work-to-home)
 (step1 (acquire-info:time-of-day => ?time)

(priority +1))
 (step2 (acquire-info:day-of-week => ?day))
 (step3 (infer rule-57 ?time ?day => ?best-route)

(wait-for step1 step2)))

In this case, the decision is based solely on whether or not
the agent is likely to face rush hour traffic, a function of the
time of day and day of week. The two information
acquisition steps are carried out in parallel, each by one of
several methods. For instance, day of the week information
is acquired either by checking a calendar or querying
memory for the current day. When these steps complete, an
inference rule is applied to decide the best route.
Information acquisition tasks can fail and thus fail to
provide a value to a decision-relevant variable— e.g. when
no calendar can be found and no information on the current
day can be acquired from memory. Similarly, execution
may omit an information-acquisition task in response to
time-pressure or other factors. In these cases, the
inference-rule will rely on a default value — e.g. that today
is a weekday.

This framework provides two means for managing resource
use in routine decision tasks. First, execution mechanisms
can control the timing of resource-demanding tasks by
interruption, delaying task initiation, or delaying
resumption. For example, if finding a calendar would take
perceptual resources (gaze) away from a higher priority
task, execution mechanisms can delay this action until the
higher priority task completes. Second, since different
information-acquisition methods will generally differ in
type and amount of required resources, methods can be
selected in order to allocate resources them most effectively.
For instance, if finding a calendar is prevented by a higher
priority use of the gaze resource, execution could try
retrieving the information from memory or using the null-
method (i.e. omitting information acquisition and forcing
reliance on a default) which requires minimal resources.

Method-selection in our system is handled by method-
selection-rules (MSRs) whose syntax mirrors that of the
COND macro in LISP. MSRs employ both transient and
long-term knowledge. Relevant long-term knowledge can
include: the expected interval during which resources must
be allocated to a method for it to complete; the usual level
of competition for resources from other tasks present during
execution of the decision-task (expected workload); the
usual amount of time available to complete the decision-
task (expected urgency); and the likelihood that the default
value associated with an information-acquisition task will
prove accurate. Such factors determine the expected utility
of alternative information acquisition methods and thus
determine a stable preference between alternatives. Taken
together, the method preferences for all steps of a decision-
method constitute a baseline decision strategy.

Transient information can be used to adapt a decision
strategy to an agent’s current situation. The current model
supports adaptation from several kinds of information

including especially: subjective workload and default
counterevidence. Subjective workload corresponds to an
agent’s evaluation of its overall “busyness” compared to
expected workload. During periods of unusually high
workload for a given decision task, decision strategy is
biased in favor of the least resource-demanding methods.
In some cases, this will cause decisions to rely on defaults
when more reliable information acquisition methods would
normally be selected.

Default counterevidence is knowledge that the default value
for some decision-relevant factor is likely to prove incorrect
for some time into the future. For example, an agent may
tend to assume that today is a weekday when deciding a
route home from work. Deciding to go into work on a
weekend day invalidates this assumption and should
(temporarily) reduce the system’s tendency to rely on it —
i.e. it should bias execution mechanisms to avoid using the
default. This function is carried out by task-specific bias
rules. Since avoiding reliance on valid defaults wastes
resources, bias rules must specify a duration, after which
their effect expires. The length of this interval depends on
the expected duration of the non-default condition and the
expected interval between successive observations of the
condition if it persists.1 The system will thus tend to rely on
invalid defaults when the default condition lasts for an
unusually long time or when an unusually long period has
passed since the condition was last observed.

3 Application: user interface evaluation

We have incorporated this approach to routine decision
making into action selection mechanisms of our human
operator model, APEX.2 The model consists primarily of
two components: action selection mechanisms based on the
RAP plan execution system, and a resource architecture
which describes limitations on perceptual, cognitive, and
motor resources and constrains action selection
mechanisms to operate within those limits.

3.1 To err is human, to prevent error is good design

APEX is intended to address a fundamental problem in the
design of user interfaces. In particular, newly designed
equipment and procedures often inadvertently facilitate
human error. Techniques for identifying error facilitations
in design tend to be either ineffective or very expensive.
For example, one of the most effective ways to test new

1 See [Freed97] for information on how the bias duration
parameter is set.

2 Architecture for Procedure Execution

designs is to hire human operators to carry out tasks using
prototyped equipment, and then observe their performance
in a wide range of operating conditions. In our domain, air
traffic control, such tests typically require hiring highly
paid expert controllers as subjects, often for extended
periods. The limited amount of testing that results from
high cost can stifle innovation and compromise safety.

One way to get some of the benefits of a "human in the
loop" study at much lower cost is to use a computer to
simulate all elements of such a study including the
equipment, human operators, and experimental observers.
Human simulation has been used successfully by others to
guide design (e.g. [John90,Corker95]). However, ours
appears to be the first system to employ the powerful and
versatile action selection mechanisms provided by AI plan
execution systems, and thus the first able to function
effectively in inherently complex, dynamic, and uncertain
domains such as air traffic control. By employing action
selection mechanisms designed for robot control, our model
overstates human capabilities in some ways, but can operate
in domains where predicting human error would be most
useful.

Though not specifically designed to make errors of any
kind, our approach to managing the resource cost of routine
decision-making enables APEX’s plan execution
component to help predict a type of error sometimes
referred to as a "habit capture" [Reason90]. Habit captures
are defined by their apparent cognitive cause. In particular,
people make such errors when, instead expending resources
to acquire reliable information, they act in accordance with
a false but usually reliable default assumption. Habit
captures are reported quite frequently in naturalistic studies
of error [Reason82]. For example:

"I went to the bedroom to change in to something more
comfortable for the evening, and the next thing I knew
I was getting into my pajama trousers, as if to go to
bed.

"I had decided to cut down my sugar consumption and
wanted to have my cornflakes without it. But the next
morning, however, I sprinkled sugar on my cereal just
as I always do."

In our view, much of people’s tendency to rely on default
assumptions can be explained as adaptations to regularities
in the task environment. For instance, people will be more
likely to rely on a default if, apriori, it is especially likely to
be true or if the environment reliably provides default
counterevidence when it is false. This view provides a
basis for predicting when people will rely on false defaults
and make habit capture errors as a result.

3.2 An Example

At a TRACON air traffic control facility, one controller
will often be assigned to the task of guiding planes through
a region of airspace called an arrivals sector. This task
involves taking planes from various sector entry points and
getting them lined up at a safe distance from one another
on landing approach to a particular airport. Some airports
have two parallel runways. In such cases, the controller
will form planes up into two lines.

Occasionally, a controller will be told that one of the two
runways is closed and that all planes on approach to land
must be directed to the remaining open runway. A
controller's ability to direct planes exclusively to the open
runway depends on remembering that the other runway is
closed. How does the controller remember this important
fact? Normally, the diversion of all inbound planes to the
open runway produces an easily perceived reminder. In
particular, the controller will detect only a single line of
planes on approach to the airport, even though two lines
(one to each runway) would normally be expected.

However, problems may arise in conditions of low
workload. With few planes around, there is no visually
distinct line of planes to either runway. Thus, the usual
situation in which both runways are available is
perceptually indistinguishable from the case of a single
closed runway. The lack of perceptual support would then
force the controller to rely on memory alone, thus
increasing the chance that the controller will accidentally
direct a plane to the closed runway.

 3.3 Simulation

When the simulated controller hears that the left runway
is closed, interpretation mechanisms cause a propositional
representation of this fact to be encoded in memory. The
encoding event generates bias (default counterevidence)
according to the following rule:

(bias-rule-17
 (if (closed ?rwy)
 (create-bias method-27 step5 (10 minutes))))

Newly generated bias is represented explicitly in memory
along with a notation indicating when the bias will expire if
not renewed. In this case, bias lasting 10 minutes causes
decision mechanisms to consider the possibility of runway
closure (step5 below) in cases where the usual state — all
runways open — might otherwise be assumed.

When a plane approaches its airspace, the simulated
controller initiates a routine plane-handling method

involving accepting responsibility for the plane,
determining where the plane is headed, and then guiding it
to its destination. If the plane's destination is Los Angeles
airport (LAX), guiding it to its destination will involve
selecting between the airport's two parallel runways. For
highly routine decisions such as runway selection, human
controllers can reasonably be expected to know which
factors to consider in making the decision and how to
appropriately weight each factor. This knowledge is
incorporated into the following decision method:

(Method-27 (select-runway ?plane)
 (step1 (id-rwy-with-fewer-planes => ?fewer))
 (step2 (id-rwy-fastest-approach ?plane =>
 ?fastest))
 (step3 (id-rwy-easiest-for-me => ?easiest))
 (step4 (id-rwy-better-microclimate =>?climate))
 (step5 (id-available-runways => ?available))
 (step6 (id-safest-rwy ?plane => ?safest))
 (step7 (infer rule-19 ?fewer ?fastest …)
 (wait-for step1 step2 … step6)))

In most cases, more than one method will be available for
acquiring information about a factor. In this example, the
controller could determine runway availability by
retrieving information from memory, asking another
controller, or by assuming the most likely condition —
that the runway is open. Since runways closures are rare
and memory retrieval is expensive [Carrier95;Stein93],
the decision strategy underlying this method (along with
associated MSRs) prescribes reliance on the default
assumption unless transient bias (default counterevidence)
promotes a more effortful alternative.

In the described scenario, bias produced after learning of
the runway closure causes the agent to temporarily avoid
reliance on the default. Instead, for some time thereafter,
the runway's availability is verified by retrieving
information from working memory whenever a runway
selection task occurs. Eventually, the initial bias expires.
To select a runway for a newly arrived plane, the agent’s
decisions will once again conform to the default
assumption. Other factors will then determine which
runway is selected. For example, the controller may
choose to direct a heavy plane to the longer left runway
which, in normal circumstances, would allow the plane an
easier and safer landing. With the left runway closed,
actions following from this decision result in error.

Avoiding error requires maintaining appropriate bias. In
a variation of the described scenario in which no error
occurs, visually perceived reminders of the runway closure
cause bias to be periodically renewed. In particular,
whenever visual attention mechanisms attend to plane
icons on an approach path to the airport, interpretation

mechanisms note the absence of a line of planes to the left
runway and signal an expectation failure.

(expectation-generation-rule-5
 (if (and
 (not (visual-group plane-icons
 lft-rwy-path))
 (visual-group plane-icons rt-rwy-path))
 (assert-anomaly (rwy-imbalance right))))

In general, whenever an expectation failure occurs, a task
to explain the observed anomaly is initiated. The first
step in such a task is to try to match the anomaly to a
known explanation-pattern (XP) [Schank86]. A match
results in a task to verify the XP hypothesis.

(explanation-pattern-5
 (:anomaly (rwy-imbalance ?rwy))
 (:candidate-explanation (closed ?rwy)))

In principle, verifying a hypothesis could involve mental
and physical actions of any kind. In the current model
however, the only way to verify a hypothesis is to check
for a match in working memory. In this case, the contents
of working memory are adequate; the anomalous absence
of planes on approach to the left runway is explained as a
result of the left runway's closure.

Bias renewal occurs whenever the working memory item
that originally produced the bias is re-encoded or
retrieved. Thus, retrieving the proposition (closed runway
left) triggers the bias generation rule just as if the
proposition had been encoded for the first time. Thus, the
unusual arrangement of planes on the radar scope acts as a
constant reminder, preventing the agent from reverting to
the use of its default assumption and thereby preventing
error.

3.4 Aiding user interface design

Interface designers often overlook aspects of an interface
that facilitate user errors, though in many instances,
design problems are obvious once pointed out
[Norman88]. The problem of noticing these design
problems becomes especially difficult in domains such as
air traffic control where interfaces must mediate complex
tasks carried out in diverse operating conditions. By
employing a model of error-prone human behavior, we
hope to partially automate the process of predicting
design-facilitated errors.

The basis for these predictions arises from an analysis of
how agents generally, and humans in particular, can
manage limited resources in decision-making.
Employing this analysis, it is possible not only to simulate
the influence of interface attributes on human tendencies

to err, but also to provide causal explanations for predicted
errors that indicate ways to repair the design. For
example, explaining the described error scenario to a
designer as an indirect consequence of low workload
indicates a clever fix: runway closures can be visually
signaled, but only in low workload conditions when the
added screen clutter would cause little distraction.

4 Discussion

The process of deciding action can make substantial
demands on limited computational and physical resources.
To cope with time-pressure and competing demands, our
system decides action on the basis of flexible strategies
incorporated into RAP-like reusable plans and other
structures. When carried out by the same task execution
mechanisms used to carry out non-decision tasks, these
decision plans provide two means for managing resources.

First, execution mechanisms can delay or interrupt
decision subtasks to give higher priority tasks preferential
access to resources. Second, execution can select between
alternative methods for subtasks on the basis of duration
or compatibility between their different resource
requirements and demands from other tasks. Selecting a
method for its resource-demand characteristics will
sometimes entail trading off against some other desirable
attribute such as reliability. In particular, execution may
rely on a default assumption in making a decision rather
than engage in time- and resource-demanding efforts to
acquire more reliable information.

Resource-management strategies that prescribe reliance on
defaults make an agent vulnerable to habit-capture errors
when assumptions underlying the strategy do not hold in
its current environment. In the described example, the
strategy of assuming runway availability in the absence of
default counterevidence makes the simulated air traffic
controller vulnerable in conditions of low workload when
counterevidence is unavailable.

The systematicity of such errors makes our approach
useful for predicting circumstances in which aspects of an
interface design might inadvertently facilitate error. By
alerting designers to the potential for such errors early in
the design process, we hope to reduce the cost of
evaluation and thereby speed the safe introduction of new
technology.

Acknowledgements

Thanks to Jim Johnston, Eric Ruthruff, Mark van Selst,
and Mike Shafto for many useful discussions.

References

[Carrier95] Carrier, L.M. and Pashler, H. Attentional
limitations in memory retrieval. Journal for experimental
psychology: learning, memory, & cognition, 21, 1339-1348,
1995.

[Corker93] Corker, K.M. and Smith, B.R. An architecture and
model for cognitive engineering simulation analysis.
Proceedings of the AIAA Computing in Aerospace 9 Conference,
San Diego, CA, 1993.

[Firby89] R.J. Firby. Adaptive execution in complex dynamic
worlds. Ph.D. thesis, Yale University, 1989.

[Freed97] Freed, M. and Shafto, M. Human-system modelling:
some principles and a pragmatic approach. Proceedings of the
Fourth International Workshop on the Design, Specification,
and Verification of Interactive System. Granada, Spain.

[Gat96] Gat, Erann. The ESL User’s Guide. Unpublished.
Available at: www-aig.jpl.nasa.gov/ home.gat/esl.html

[John94] John, B.E. and Kieras, D.E. The GOMS Family of
Analysis Techniques: Tools for Design and Evaluation.
Carnegie Mellon University. School of Computer Science, TR
CMU-CS-94-181, 1994.

[Norman88] Norman, Donald A. The Psychology of Everyday
Things. Basic Books, New York, N.Y., 1988.

[Pell97] Pell, B., Bernard, D.E., Chien, S.A.., Gat, E.,
Muscettola, N., Nayak, P.P., Wagner, M., and Williuams, B.C.
An autonomous agent spacecraft prototype. Proceedings of the
First International Conference on Autonomous Agents, ACM
Press, 1997.

[Reason90] Reason, J.T. Human Error. Cambridge University
Press, New York, N.Y., 1990.

[Reason82] Reason, J.T. and Mycielska, K. Absent-minded?
The psychology of mental lapses and everyday errors.
Englewood Cliffs, N.J., Prentice Hall, 1982.

[Schank86] Schank, Roger C. Explanation Patterns. Lawrence
Earlbaum Associates, Hillsdale, N.J., 1986.

[Simmons94] Simmons, R. Structured control for autonomous
robots. IEEE Transactions on Robotics and Automation. 10(1),
1994.

[Stein93] Stein, Earl S. and Garland, Daniel. Air traffic
controller working memory: considerations in air traffic control
tactical operations. FAA technical report DOT/FAA/CT-
TN93/37, 1993.

